

LE RÉSEAU DE CRÉATION ET D'ACCOMPAGNEMENT PÉDAGOGIQUES

Ce document a été mis en ligne par le Canopé de l'académie de Montpellier pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel.

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

BREVET DE TECHNICIEN SUPÉRIEUR CONSTRUCTIONS METALLIQUES SESSION 2016

E5. DESSIN DE CONCEPTION

U5.1 Conception

Durée: 4h - Coefficient: 3

Contenu du dossier

Page de garde 1 / 11 Sujet page 2 à 6 / 11 Annexes page 7 à 9 / 11 Documents réponse page 10 à 11/ 11

Barème indicatif

1 sur 3 points

2 sur 6 points

3 sur 7 points

4 sur 4 points

Recommandations

Les parties sont indépendantes.

Durée : 4 h	Coefficien	t : 3		Page : 1/11	
SESSION 2016	SUJET	ÉI	ÉPREUVE : U5 .1 Conception		
CODE ÉPREUVE : CME5CO	EX BREVET DE TEC	AMEN : HNICIEN SUP	ÉRIEUR	SPÉCIALITÉ Constructions Méta	

1. ETUDE DE LA STABILITE DE L'OUVRAGE

1-1 <u>Stabilité longitudinale</u>: file B et G

- 1-1-1 Quelles sont les différentes solutions adoptées ?
- 1-1-2 *Compléter le DR1 page 10 / 11* en indiquant comment sont transmis les efforts appliqués par le vent sur les pignons, indiquer le cheminement des efforts jusqu'aux fondations ainsi que les sollicitations dans les barres (traction ou compression).

1-2 Stabilité du pignon file 1 :

- 1-2-1 Pourquoi avoir choisi cette solution?
- 1-2-2 *Compléter le DR1 page 10 / 11* en indiquant comment sont transmis les efforts dus au vent, indiquer le cheminement des efforts jusqu'aux fondations ainsi que les sollicitations dans les barres (traction ou compression)..

EXAMEN: BTS Constructions Métalliques - Session 2016 - CME5CO - Épreuve U51 Conception - page 2/11

2. ETUDE DU PLANCHER file 1 à 3 :

Voir plan et perspective plancher dossier technique page 8. Plancher collaborant Cofraplus 60 e = 0,75 mm, dalle épaisseur d = 10 cm On fera l'hypothèse que le bac collaborant repose sur 4 appuis.

2-1 Plancher collaborant : voir annexe 1 à 3

- 2-1-1 Donner le poids propre du plancher ci-dessus (en da N / m²).
- 2-1-2 Vérifier sa portée maximum et indiquer si il est nécessaire de mettre des étais pour sa mise en œuvre.

2-2 Chargement:

Charges permanentes 230 daN/m². Charge d'exploitation 350 daN/m².

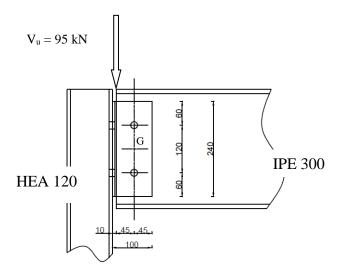
- 2-2-1 Définir la largeur de la bande de chargement pour la solive IPE 270 la plus sollicitée.
- 2-2-2 Définir la charge linéique appliquée à la solive apportée par les charges permanentes (ne pas oublier le poids propre des solives) : G.
- 2-2-3 Définir la charge linéique appliquée à la solive apportée par la charge d'exploitation : I.
- 2-2-4 Définir les combinaisons de charges à prendre en compte à l'ELS et à l'ELU.

2-3 Etude d'une solive IPE 270 :

Solive isostatique, portée 6,100 m.

Charges permanentes G = 5.8 kN/m. Charge d'exploitation I = 8.2 kN/m.

Vérification à l'ELS et à l'ELU:


- 2-3-1 Définir les flèches admissibles pour le plancher (plancher supportant des cloisons en plâtre).
- 2-3-2 Vérifier la solive à l'ELS.
- 2-3-3 Vérifier la solive à l'ELU.
- 2-3-4 Proposer une solution pour réaliser l'attache des solives IPE 270 sur les poutres principales IPE 360, faire un schéma.

EXAMEN: BTS Constructions Métalliques - Session 2016 - CME5CO - Épreuve U51 Conception - page 3/11

3. ETUDE DE L'ATTACHE POUTRE IPE 300 POTEAU HEA 120 :

L'attache de la poutre sur le poteau est constituée par une articulation réalisée par :

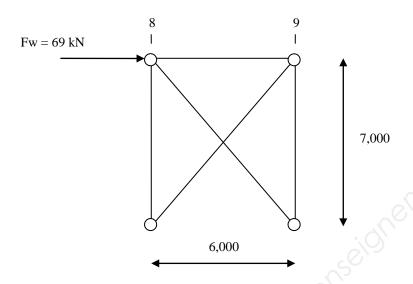
- deux cornières 100 x 60 x 6
- 6 boulons HM 16 de classe 8.8.

L'effort tranchant dans l'assemblage est de 95 kN à l'ELU . Acier de nuance S 275.

3-1 Vérification de l'attache côté poutre :

- 3-1-1 Vérifier les dispositions constructives (pas et pince).
- 3-1-2 Déterminer l'effort dans le boulon le plus sollicité. Vous tiendrez compte de l'excentricité de V_u par rapport à G.

Compléter le document réponse DR 2 page 11 / 11


3-1-3 En considérant un effort de cisaillement maxi de 60 kN par boulon, vérifier la résistance de ce boulon.

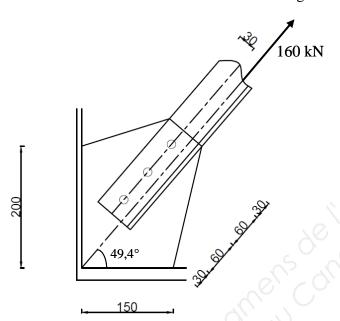
EXAMEN: BTS Constructions Métalliques - Session 2016 - CME5CO - Épreuve U51 Conception - page 4/11

4. CROIX DE STABILITE FILE G:

4-1 <u>Diagonale</u>

En file B et G

Largeur 6,000 m hauteur 7,000 m Effort non pondéré du au vent 69 kN


4-1-1 Calculer l'effort dans la diagonale tendue (la diagonale comprimée ne sera pas considérée).

4-2 Etude de l'attache de diagonale :

L'attache de la diagonale sur le poteau est constituée par une articulation réalisée par :

- Une cornière 70 x 70 x 7
- 3 boulons HM 16 classe 8.8
- Gousset épaisseur 8 mm.
- Soudure : Double cordon vertical $a=3 \text{ mm}, l_{\text{eff.}}=200 \text{ mm}.$
 - Double cordon horizontal $a = 3 \text{ mm}, l_{eff.} = 150 \text{ mm}$

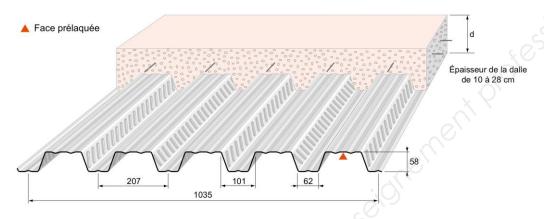
Vous considèrerez un effort de traction dans la diagonale $F_{ed} = 160 \text{ kN}$ à l'ELU.

Vous considèrerez un effort centré.

Vous négligerez l'excentrement de l'effort par rapport à l'axe des boulons (axe neutre, axe de trusquinage).

- 4-2-1 Vérifier la résistance des boulons au cisaillement.
- 4-2-2 Vérifier la résistance de la cornière à la traction et au cisaillement de bloc.
- 4-2-3 Vérifier la résistance des soudures.

Hypothèse : Les cordons sur l'âme du poteau transmettent la composante verticale de Fed, les cordons sur la platine transmettent la composante horizontale de Fed


- 4-2-3-1 Déterminer les efforts au centre de gravité des cordons de soudure
- 4-2-3-2 Vérifier la résistance des cordons de soudure.

Arval

PLANCHERS COLLABORANTS

COFRAPLUS 60

CARACTÉRISTIQUES GÉOMÉTRIQUES

APPLICATIONS

Cofraplus 60 est un profil nervuré cranté latéralement destiné à la construction de dalles béton.

Cofraplus 60 évite le décoffrage, allège le plancher et économise une nappe d'armatures.

DÉFINITIONS / NORMES

Identification de l'acier

- · Norme NF EN 10326 : "bandes et tôles en acier de construction revêtues en continu par immersion à chaud".
- · Norme XP 34-301 : "Tôles et bandes d'acier de construction galvanisées prélaquées ou revêtues d'un film organique calandré, destinées au bâtiment".
- · Norme EN 10169-3 : "Produits plats en acier revêtus en continu de matières organiques (prélaqués) - partie 3 produits pour applications intérieures dans le bâtiment".
- · Acier: S350 GD selon norme NF EN 10326.

Coffrage

Cofraplus 60 sert de coffrage porteur, entre solives dans la pose sans étai, ou entre files d'étais et solives.

Sa légèreté facilite la manipulation d'éléments de grand format livrés à longueur jusqu'à 15 mètres.

Le crantage latéral scelle le profil autour des nervures moulées en sous-face de la dalle béton des planchers. Comme armature, Cofraplus 60, en épaisseur 0,75 mm apporte 10,29 cm²/ml ou 13,91 cm²/ml d'acier en épaisseur 1,00 mm dans le sens porteur du plancher.

Revêtement

- · galvanisé Z 275.
- · galvanisé prélaqué :

Intérieur 12

- catégorie II selon XP 34-301
- catégorie CPI2 selon EN 10169-3
- Haiplus® 25:
 - catégorie IIIa selon XP 34-301
- catégorie CPI3 selon EN 10169-3 · Autres revêtements : sur consultation.

Réglementation

• Avis Technique 3/03-390 et 3/03-390* 01 Add.

Cofraplus 60 est spécialement conçu pour les ouvrages à surchages modérées et portées moyennes.

Les planchers sur vide sanitaire doivent être visitables et

Versions

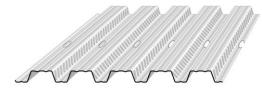
Trois versions sont disponibles:

· La version standard est appelée COFRAPLUS 60.

· La version spécialement adaptée pour utilisation en système poutre mixte avec connecteurs de types Hilti ou Nelson posés au travers du bac sur chantier est appelée COFRAPLUS 60 C : fabrication spécifique sur demande.

COFRAPLUS 60 C

(version connecteur fond de nervure)



· COFRAPLUS 60 peut être réalisé avec préperçage pour le passage des goujons soudés en atelier. Cette version est appelée COFRAPLUS 60 P :

Étude et fabrication sur demande. (jusqu'à une épaisseur de 1,00 mm).

COFRAPLUS 60 P

(le plan de perçage est à fournir)

Arval

PLANCHERS COLLABORANTS

COFRAPLUS 60

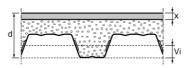
CARACTÉRISTIQUES TECHNIQUES DU PLANCHER VERSION STANDARD

Caractéristiques utiles du profil

Épaisseur nominale de la tôle e	mm	0,75	0,88	1,00	1,25
Poids au mètre carré utile	kg/m ²	8,53	10,00	11,37	14,22
Section active d'acier : A	cm ² /ml	10,29	12,17	13,91	17,57
Inertie propre du profil : i	cm ⁴ /ml	55,12	65,21	74,53	93,94
Position fibre neutre : v _i	cm	3,33	3,33	3,33	3,33
Module d'inertie : I/v:	cm ³ /ml	16.55	19.58	22.38	28.20

Consommation nominale de béton

CARACTÉRISTIQUES Caractéristiques utiles du		UES DU PI	ANCHE	R VERS	ON STAN	IDARI)		
Épaisseur nominale de la tôle e	mm	0,75	0,88	1,00	1,25				
Poids au mètre carré utile	kg/m ²	8,53	10,00	11,37	14,22				
Section active d'acier : A	cm ² /ml	10,29	12,17	13,91	17,57				
Inertie propre du profil : i	cm ⁴ /ml	55,12	65,21	74,53	93,94				
Position fibre neutre : v _i	cm	3,33	3,33	3,33	3,33				
Module d'inertie : I/v _i	cm ³ /ml	16,55	19,58	22,38	28,20				
Consommation nominale	de béton				_			X Y	
Épaisseur d cm	10 11	12 13	14	15 1	6 18	20	24	28	
Litrage I/m ²	65 75	85 95	105	115 12	25 145	165	205	245	
Poids théorique du béton seul* kg/m²	155 179	203 227	251	275 29	99 347	395	491	587	


^{*} Pour obtenir le poids total de la dalle il faut ajouter le poids du béton dû à la flèche ainsi que le poids du profil. Poids volumique du béton 2400 kg/m³.

Caractéristiques utiles en travée de la dalle

Épaisseur d	cm	10	11	12	13	14	15	16	18	20	24	28
Pour e = 0,75 mm distance d-v _i	cm	6,67	7,67	8,67	9,67	10,67	11,67	12,67	14,67	16,67	20,67	24,67
Distance x	cm	3,25	3,56	3,90	4,13	4,40	4,65	4,90	5,36	5,79	6,59	7,31
I ₁₅	cm ⁴ /m	252	329	421	527	649	786	938	1289	1705	2731	4024
z	cm	5,59	6,48	7,39	8,29	9,20	10,12	11,04	12,88	14,74	18,47	22,23
Épaisseur d	cm	10	11	12	13	14	15	16	18	20	24	28
Pour e = 1,00 mm distance d-v _i	cm	6,67	7,67	8,67	9,67	10,67	11,67	12,67	14,67	16,67	20,67	24,67
Distance x	cm	3,59	3,94	4,28	4,60	4,90	5,20	5,48	6,01	6,51	7,43	8,27
I ₁₅	cm4/m	309	404	517	648	799	969	1159	1600	2123	3424	5073
Z	cm	5,47	6,36	7,24	8,14	9,04	9,94	10,84	12,67	14,50	18,19	21,91

Notation

- d : épaisseur de la dalle, nervure du bac incluse
- v_i : distance de l'axe neutre du bac à sa fibre inférieure
- x : distance de l'axe neutre de la dalle à sa fibre supérieure
- I_{15} : inertie mixte équivalente en acier correspondant à E_a/E_b = 15
- · z : bras de levier conventionnel (d-v_i x/3)

Les valeurs de "m" et de "k" sont données dans le système d'unités : longueur en cm, force en daN

Cisaillement admissible entre tôle et béton

 $\tau = T / 100 \cdot z \le m \cdot P \cdot d/L + k$

avec

 ρ = rapport de la section de la tôle à la section utile de béton (hauteur d-v_i)

L = portée de calcul en cm

	Résistance	Glissement Charge Charge statique dynamique			
m	3238	1775	1420		
k	0.1286	0.5302	0.4242		

Résistance au feu

CF : degré coupe-feu du plancher brut.

Une épaisseur minimale est requise pour le respect du critère de température en face non exposée.

CF demandé	60'	90'	120'	180'
d mini en cm	11	12	15	18

En l'absence d'armatures spécifiques, les planchers Cofraplus sont CF 30'. Pour des CF supérieurs, la résistance du plancher pour le délai requis d'exposition au feu doit être justifiée par la prise en compte des seules armatures enrobées dans le béton.

Isolation acoustique

Le comportement acoustique du plancher brut correspond à la loi de masse. (valeurs calculées par modélisation)

Épais. d en cm	10	11	12	13	14	15	20	24	28
Rw (C;Ctr)	44 (-1;-3)	45 (-1;-4)	46 (-1;-4)	47 (-1;-4)	48 (-1;-5)	48 (-1;-4)	52 (-2;-6)	54 (-1;-7)	56 (-1;-7)

Arval

PLANCHERS COLLABORANTS

COFRAPLUS 60

CHARGES D'EXPLOITATION

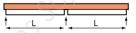
L'Avis Technique du Cofraplus 60 prend en compte les charges réparties, concentrées et linéaires. Il est formulé pour des intensités de ces charges ne dépassent pas les limites suivantes :

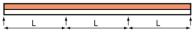
- charges ponctuelles statiques : < 20 kN
- charges linéaires statiques : ≤ 10 kN par ml
- charges ponctuelles dynamiques :
 < 15 kN
 - et espacées d'au moins 1,20 m les unes des autres.
- charges roulantes pour des véhicules dont la charge maximale par essieu n'excède pas 30 kN.

Ces limitations s'exercent en l'absence d'une vérification complète de la répartion de ces charges.

PORTÉES L MAXI (cm) à la pose du Cofraplus 60 en version standard

- En phase de montage et de coulage du béton, Cofraplus 60 épaisseur 0,75 mm peut supporter des portées limites L selon les tableaux ci-dessous qui prennent en compte les conditions de flèche L/240.
- · Lorsque les files d'étais sont nécessaires, celles-ci divisent la travée en parties égales.


1 travée

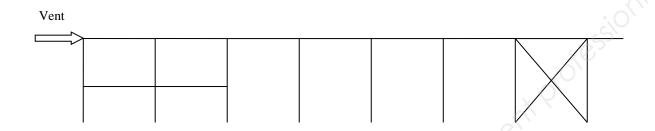

2 travées en continu

Épaisseur dalle en cm	0 étai	1 étai	2 étais
10	273	330	330
11	262	363	363
12	252	396	396
13	244	429	429
14	237	462	462
15	231	495	495
16	225	525	528
17	220	509	561
18	215	495	594
19	210	481	617
20	206	469	637
21	203	457	657
22	199	446	670
23	196	436	654
24	193	427	640
25	190	418	627
26	187	410	615
27	184	402	603
28	182	394	591

Épaisseur dalle en cm	0 étai	1 étai	2 étais
10	360	360	360
11	348	396	396
12	336	432	432
13	326	468	468
14	316	504	504
15	306	540	540
16	295	525	576
17	285	509	612
18	276	495	648
19	268	481	684
20	260	469	703
21	253	457	686
22	247	446	670
23	241	436	654
24	235	427	640
25	230	418	627
26	225	410	615
27	219	402	603
28	214	394	591

2 travées en feuillure

3 travées en continu

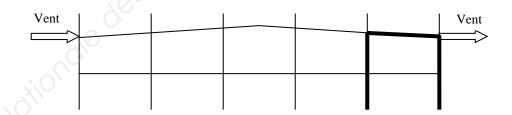

Épaisseur dalle en cm	0 étai	1 étai	2 étais
10	273	360	360
11	262	396	396
12	252	432	432
13	244	468	468
14	237	504	504
15	231	540	540
16	225	525	576
17	220	509	612
18	215	495	648
19	210	481	684
20	206	469	703
21	203	457	686
22	199	446	670
23	196	436	654
24	193	427	640
25	190	418	627
26	187	410	615
27	184	402	603
28	182	394	591

Épaisseur dalle en cm	0 étai	1 étai	2 étais					
10	346	360	360					
11	333	396	396					
12	322	432	432					
13	312	468	468					
14	304	504	504					
15	296	504	504					
16	289	504	504					
17	281	504	504					
18	276	504	504					
19	268	504	504					
20	260	504	504					
21	253	504	504					
22	247	504	504					
23	241	504	504					
24	235	504	504					
25	230	504	504					
26	225	504	504					
27	219	504	504					
28	214	504	504					

Document réponse DR 1Document à rendre avec la copie

1-1-2

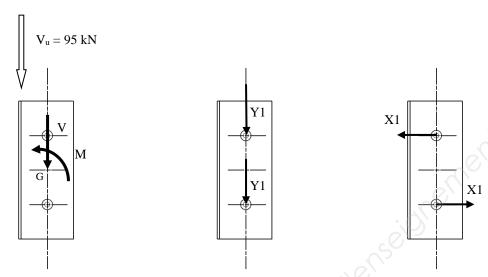
Long pan File B



Long pan file G

1-2-2

Pignon file 1



Document réponse DR 2

Document à rendre avec la copie

3-1 <u>Vérification de l'attache côté poutre :</u>


3-1-2

1 Calculer V et M effet de Vu au centre de gravité des boulons.

2 Calculer Y1 dans chaque boulon à partir de Vu.

3 Décomposer M en deux efforts X1 au niveau de chaque boulon.

4 Calculer Ved résultante de X1 et Y1.